Maschinelles Lernen mit R
Daten aufbereiten und verarbeiten mit H2O und Keras
Buch online lesen
Sie werden nun auf die Hanser eLibrary weitergeleitet
Dort steht Ihnen der Inhalt kostenlos zur Verfügung. Wenn Sie nicht automatisch weitergeleitet werden, klicken Sie bitte hier
Hinweis:
Bitte melden Sie sich an oder registrieren Sie sich, um auf unsere Inhalte zugreifen zu können. Wichtig: Ihr Account vom alten Portal ist nicht mehr gültig.
ISBN Print:
978-3-446-47165-8
ISBN E-Book:
978-3-446-47244-0
Erscheinungsdatum:
17.01.22
Seiten:
379
Preis:
39,99 €
Produktinformationen "Maschinelles Lernen mit R"
- Grundlagen und Beispiele
- Daten visualisieren und analysieren
- Lernergebnisse bewerten und übertragen
- Mit vielen Beispielen in R zum Download unter plus.hanser-fachbuch.de
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Wie bringt man Computern das Lernen aus Daten bei?
Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. Sie werden in die Lage versetzt, den jeweils zielführenden Ansatz auszuwählen und auf eigene Fragestellungen wie Bild-Klassifizierung oder Vorhersagen anzuwenden.
Da fehlerhafte Daten den Lernerfolg gefährden können, wird der Datenvorbereitung und -analyse besondere Aufmerksamkeit gewidmet. R stellt hierfür hochentwickelte und wissenschaftlich fundierte Analyse-Bibliotheken zur Verfügung, deren Funktionsweise und Anwendung gezeigt werden.
Sie erfahren, für welche Anwendungsfälle statistische Verfahren wie Regression, Klassifikation, Faktoren-, Cluster- und Zeitreihenanalyse ausreichen und wann Sie besser mit neuronalen Netzen wie z. B. CNNs oder RNNs arbeiten sollten. Hier kommen das Framework H20 sowie Keras zum Einsatz.
Anhand von Beispielen wird gezeigt, wie Sie Stolpersteine beim Lernvorgang analysieren oder von vornherein vermeiden können. Darüber hinaus erfahren Sie, unter welchen Umständen Sie die Ergebnisse des maschinellen Lernens weiterverwenden können und wie Sie dabei vorgehen.
- Daten visualisieren und analysieren
- Lernergebnisse bewerten und übertragen
- Mit vielen Beispielen in R zum Download unter plus.hanser-fachbuch.de
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Wie bringt man Computern das Lernen aus Daten bei?
Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. Sie werden in die Lage versetzt, den jeweils zielführenden Ansatz auszuwählen und auf eigene Fragestellungen wie Bild-Klassifizierung oder Vorhersagen anzuwenden.
Da fehlerhafte Daten den Lernerfolg gefährden können, wird der Datenvorbereitung und -analyse besondere Aufmerksamkeit gewidmet. R stellt hierfür hochentwickelte und wissenschaftlich fundierte Analyse-Bibliotheken zur Verfügung, deren Funktionsweise und Anwendung gezeigt werden.
Sie erfahren, für welche Anwendungsfälle statistische Verfahren wie Regression, Klassifikation, Faktoren-, Cluster- und Zeitreihenanalyse ausreichen und wann Sie besser mit neuronalen Netzen wie z. B. CNNs oder RNNs arbeiten sollten. Hier kommen das Framework H20 sowie Keras zum Einsatz.
Anhand von Beispielen wird gezeigt, wie Sie Stolpersteine beim Lernvorgang analysieren oder von vornherein vermeiden können. Darüber hinaus erfahren Sie, unter welchen Umständen Sie die Ergebnisse des maschinellen Lernens weiterverwenden können und wie Sie dabei vorgehen.
Anmelden
"Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. [...] Anhand von Beispielen wird gezeigt, sie Stolpersteine beim Lernvorgang analysiert oder von vorneherein vermieden werden können." SPS Magazin, Mai 2022